Differentiable Fluids with Solid Coupling for Learning and Control

Abstract

We introduce an efficient differentiable fluid simulator that can be integrated with deep neural networks as a part of layers for learning dynamics and solving control problems. It offers the capability to handle one-way coupling of fluids with rigid objects using a variational principle that naturally enforces necessary boundary conditions at the fluid-solid interface with sub-grid details. This simulator utilizes the adjoint method to efficiently compute the gradient for multiple time steps of fluid simulation with user defined objective functions. We demonstrate the effectiveness of our method for solving inverse and control problems on fluids with one-way coupled solids. Our method outperforms the previous gradient computations, state-of-the-art derivative-free optimization, and model-free reinforcement learning techniques by at least one order of magnitude.

Publication
AAAI Conference on Artificial Intelligence (AAAI 2021)
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Supplementary notes can be added here, including code, math, and images.

Related